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The behavior of the iterates of the map T(x, y) = (1 + y - ax 2, bx) can be 
useful for the understanding of turbulence. In this study we fix the value of 
b at 0.3 and allow a to take values in a certain range. We begin with the 
study of the case a = 1.4, for which we determine the existence of a strange 
attractor, whose region of attraction and Hausdorff dimension are obtained. 
As we change a, we study numerically the existence of periodic orbits 
(POs) and strange attractors (SAs), and the way in which they evolve and 
bifurcate, including the computation of the associated Lyapunov numbers. 
Several mechanisms are proposed to explain the creation and disappearance 
of SAs, the basin of attraction of POs, and the cascades of bifurcations of 
POs and of SAs for increasing and decreasing values of a. The role of 
homoclinic and heteroclinic points is stressed. 

KEY WORDS : H6non-Pomeau attractor; evolution of strange attractors ; 
Hausdorff dimension; Lyapunov numbers; numerical experiments; 
homoclinic and heteroclinic points. 

1. INTRODUCTION 

The at tempt  to unders tand  the na ture  of turbulence has led to the in t roduct ion  

of  simplified problems exhibit ing a behavior  similar to that  of  the actual case 

for example, use of  the Lorenz equat ions  (11~ as a model  of the B6nard 

problem. The Poincar6 map associated with the Lorenz equat ions led H6non  
and  Pomeau  (7~ to in t roduce the "eas ies t"  nontr ivial  map from R 2 into itself. 

I t  is easy in the sense that  the equat ions are quadrat ic  and the Jacobian  is 
cons tant  (a Cremona  map).  Fur thermore ,  all the C r e mona  quadrat ic  maps  
can be put  into the form used by H6non  and Pomeau.  This map is a model  
of the Poincar6 map associated with the Lorenz equat ions with some magni-  
fication of the Jacobian in order  to see the structure. 
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1.1. The Equations and Fixed Points 

The  m a p  in t roduced by H6non and Pomeau  is given th rough  the 
equat ion T(x ,  y) = (1 + y - ax  2, bx). We have ]DT[ = - b ,  and we fix f rom 
now on the value b = 0.3. <5'7~ We note that  T is orientat ion-reversing.  In 
some cases the use of  T 2 instead of  T is more  convenient.  

The  fixed points  o f  T are H•  with coordinates  x• = { - ( 1  - b) _+ 
[(1 - b) 2 + 4a]~I=}/2a, y •  = b x ~ .  We shall call the set o f  points  for  which 

( -  2ax 10), the eigenvalues Ix I < (1 - b)/2a the contractive zone. As D T  = b 

at H ~  are A = - a x  + (a2x 2 + b) ~/2. We see that  H _  will be a saddle point  
for  all values of  a. The  point  H+  will be in the contract ive zone and hence 
asymptot ical ly  stable for  small values of  a > 0. For  a = 3(1 - b)2/4, H+ is 
in the boundary  of  the contract ive zone and we have A = - 1. [At this point  a 
bifurcat ion to two 2-periodic points appears ,  which are stable up to a = 
(1 - b) 2 + (1 + b)2/4, when a 4-periodic orbit  bifurcates.] Fo r  larger values 
of  a, H+ leaves the contract ive zone and is a saddle point.  Not ice  that  if  
a > (3 - 2b - bZ)/4 no more  than two successive points lie in the contractive 
zone. 

1.2. Invariant Manifolds 

The invariant  manifolds  of  the hyperbol ic  points are obta ined in an 
e lementary  way. Let  y = ~(x) be their equat ion near  the fixed point  and (f,  g)  
the componen t s  of  T. We impose  g(x,  ~(x))  = ~ ( f ( x ,  ~(x))). Let  fil be the 
linear par t  o f  4, given by the eigenvalues of  D T  at  the fixed points. Consider  
the sequence {ft,} defined recursively by 

fll = axo +_ (a2xo 2 + b)Z/2; fi2 = a~z/(fiz + yz 2) 

53 = - 25~yly2I(51 + ~?) 
5~ = - [5~(r~  ~ + 2rl/~3) + 353r?~d/(51 + 714) 

55 = -[52(2y154 + 2y=53) + fia(3y~r2 = + 3rl=Sa) + 454y, ay2]/(5, + y s) 

5s = -[52(2y155 + 2y254 + 5a ~) + 53(37,254 + 6yW=Sa + y~3) 

+ 54(4yzafla + 6y12y22) + 5557147=]/(51 + y 6 )  

where  we have in t roduced yl  = 51 - 2aXo = b /5 , ,  y= = 5 2 -  a = 
-afi lS/[b2(51s + b2)]; (x0, Yo) is one of  the fixed points. 

The  stable and unstable invar iant  manifolds  W~, W• (resp. W~_, WE) 
of  H+  (resp. H _ )  have the c o m m o n  expression ~ = ~(~) = E, a ,  5,~', where  

= x - Xo and ~ = y - Y0. Due  to the hyperbolici ty of  H~ the radius of  
convergence of  ~ is positive. 
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Given a segment of  an unstable invariant manifold we globalize by 
iteration(16~: Select a value (x such that ~:2 = fl12~:1 is in the region of con- 
vergence and some spacing h = (~:2 - (1)/n (n is not necessarily an integer). 
First we obtain the images of  ~: = sel + kh, k = 0 to n - 1 under T ~, s = 2. 
When ~: reaches ~:2, both ~: and h are divided by/312 and s is increased by 2. 
This procedure is iterated as necessary. Use T-1 for the stable manifolds. 

The same method can be applied in order to find the invariant manifolds 
W s'u"-Po of a point in an n-periodic orbit (n-PO) which is hyperbolic under T ~. 
However, the expression for T" is rather cumbersome: polynomials of  degree 
2 ~. We remind the reader that following Poincar6 the points in W~.po ~ WmLPO 
are called homoclinic if the POs are the same and heteroclinic if they are 
different. 

In a similar way we can find the asymptotic expansion of the unbounded 
branches of  IV+ s and W_ u when x tends toward + m  and -o% respectively. 
They are 

(b) 1/2X1/2 (b/a)~J4/(2a) _ ~/~ 
y = aN 2 + --  1 ~ x -~- o ( x  -1/~) 

and 

Y = - ( b l a y / f f - x Y / 2  + ~l--ff~} ( - x )  + o(x -~/') 

Parts of  this work, in particular Section 2, were presented previously. (15~ 
Some comments of  Dr. H6non have stimulated the search for a more complete 
description of the family of  diffeomorphisms. 

2. T H E  F IRST E X A M P L E  

The case a = 1.4 has the historical importance of being the first analyzed 
by H6non and Pomeau. They discovered the existence of a strange attractor, 
i.e., an attractor that is neither a fixed point nor an attracting PO. It  is instruc- 
tive to study this case first. 

2.1. Stable  and Unstable  Regions 

Figure 1 shows qualitatively the invariant manifolds of  H+ and H _ .  For  
a more quantitative point of  view of the strange attractor we refer to Refs. 
5 and 7, but the smallness of some details does not allow us to see the structure. 

The two branches of  W ~_ are the boundary of a region R which contains 
H+ (and, of  course, one of the branches of  W~_). Both branches tend toward 
W~ by iteration of T-1. The measure of  R is unbounded and the tongues 
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Fig. 1. a = 1.4: Qualitative picture of the invariant manifolds of the fixed points. 

formed by W ~_ become finer when x ~ +~.(5~ (For an area-preserving diffeo- 
morphism this will be equivalent to the existence of a nonisolating integral.) 

The behavior of  the two branches of W~ is quite different. One of them, 
W~. :, has no turning points and has the asymptotic expansion given in Section 
1.2. The other one oscillates around both sides of  W%:, approaching W~_, 
and reproduces the structure of the fine tongues. 

With respect to unstable manifolds, one of the branches, W ~_1, of W ~_ 
has no turning points and approaches -0o  asymptotically, as has been 
described in Section 1. Through iterates T ~ the points outside R pass from 
the vicinity of W~: for k ~ -00  to that of  W~_: for k -+ + ~ .  

The two branches of W~ are inclosed in R and, in fact, if  we cut by a 
convenient disk centered at the origin (of radius 100, say), in an invariant 
bounded set. Other invariant bounded sets are given in Refs. 5 and 7. Both 
branches are interlaced and between them we find the unstable bounded 
branch W ~_2 of W3. 

2.2. Homocl in ic  and Heterocl in ic  Points 

Figure 2 shows, again qualitatively, some of the first tongues of W~:, 
including homoclinic points belonging to W~: n W~2. As noted in Ref. 3, 
the computation of  iterates is severely beset by errors (exponentially growing), 
but we can have confidence in the "f i rs t"  homoclinic point. Actually the 
exponential growth is produced along W u and not across the manifold (see 
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Fig. 2. a = 1.4: Qualitative behavior of W~ z, showing some of the homoclinic points 
(64) and their order on W% 2. 

below for the discussion of Lyapunov numbers). We can say that the W u 
produced is correct but the parametrization is not. 

The information given in Fig. 2 is part  of  a computation of homoclinic 
points reduced to the segment of  W~-2 between H+ and the Y axis. Using the 
method described in Section 1.2, we obtain the first 500 homoclinic points 
starting with ~:1 = 0.001 and n _~ 37. At most 24 iterations of  T are needed. 
Then we order the homoclinic points along W~ 2 by increasing ordinate. The 
impossibility of  seeing the fine structure in a plot is illustrated by the fact that 
the distance between the homoclinic points numbers 500 and 473 (consecutive 
in W~-2) is 2.9 x 10 -14. Table I gives the 25 first homoclinic points. Such 
points and many others will be used in Section 2.5. 

The images under T (note that T preserves orientation along W~2) of 
the computed homoclinic points belong to W u +2 n W s +2. Between two 
families we have heteroclinic points belonging to W ~ _ 2 n W~ ~. We call such 
points inner heteroclinic. Another  kind, which we shall call outer heteroclinic 
points, plays a very important  role, which will be studied in Section 4.1. 
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Table I. First Homoelinic Points in 
W s = +2 C~ W~z for a 1.4 

x y 

0.338644551953 
0.340827035075 
0.623951842734 
0.602042198865 
0.431432347190 

0.431437264629 
0.602009451523 
0.624011863858 
0.340778644025 
0.338890064418 

0.631174277631 
0.630638901288 
0.626361920241 
0.626362046392 
0.630638098792 

0.631175740094 
0.338886968299 
0.340782406880 
0.624007963876 
0.602018383611 

0.602030951824 
0.623958299271 
0.340919750369 
0.338652367403 
0.631350094671 

-0.255139766232 
-0.252591279980 

0.175241370201 
0.134205149735 

-0.139902534849 

-0.139895795582 
0.134144808379 
0.175355611563 

-0.252757403588 
-0.254866334584 

0.189059731319 
0.188030470072 
0.179836428241 
0.179836669182 
0.188028927867 

0.189062543991 
-0.254869783827 
-0.252753191830 

0.175348188219 
0.134161266651 

0.134184425224 
0.175253658789 

-0.252599436624 
-0.255131064599 

0.189397912524 

2.3 .  A t t r a c t i n g  C h a r a c t e r  

As ]DT2[ = b 2 = 0.09 and h 2 ~ 3.7 along I4~+1, the initial errors in 
points used to generate ~ 1 are quickly reduced. Locally (near H+) W~ is an 
attracting manifold. (However, at some points, especially near the end of the 
fine tongues of W~_, it is possible to find that D T  ~ is contracting along 
the manifold and expanding in directions transverse to it. That this is not the 
average case is discussed in Section 5.1.) The fact that W~ cuts the con- 
tracting zone [x[ < 0.25 may play a role in the attracting character of W~. 

The most important feature in order that W~_ be an attractor is the 
existence of homoclinic points. When a point near H§ is attracted by W~ 
their images are near I4m+ and the average distance to W~ is reduced by a 
factor of ~ 0.2 at every iteration under T. The presence of homoclinic points 
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T a b l e  II. S o m e  P e r i o d i c  Po in ts  f o r a  = 1 .4  

n x y 

2 -0.47580004 0.29274002 
4 0.21776177 0.19145820 
6 0.24331390 0.24084051 

0.31145232 0.17386310 
7 0.12844340 0.25534765 

0.21789019 0.24541056 
0.36788265 0.20824060 
0.37068442 0.19237492 

8 0.10042074 0.25936957 
0.23400077 0.24377027 

0.27904750 0.18033354 
0.36859296 0.22487145 
0.40329615 0.21137377 
0.40447097 0.17838995 
0.43962159 0.17060379 

9 0.11635251 0.25773957 
0.40320219 0.22102278 

10 0.17985526 0.19826568 
0.20759334 0.19388329 
0.23059169 0.24423380 

0.28974097 0.17821733 
0.32749477 0.23023617 
0.43732151 0.21626365 
0.46710699 0.21213436 

11 0.32655413 0.23190253 

12 0.07528779 0,26074152 
0.02154057 0.26678955 

13 0.11206125 0.24040817 
0.44024457 0.21723486 

14 0.14584542 0.25330918 

0.20381413 0.21857411 
15 0.07932553 0.21593891 

0.25918394 0.18361096 
17 0.30688114 0,22294060 
18 0.31439051 0.22119578 

19 0.16520045 0.25029259 
0.44276055 0.21551536 

20 0.02198433 0.26842848 
0.19104625 0.24897300 

21 0.02825633 0.26736014 

0.07927680 0.26176091 
23 0.30521445 0.20929979 
24 0.18111044 0.24994053 
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produces a feedback and (perhaps after a great number of  iterations) the 
point returns to the neighborhood of H + .  For  points attracted initially by 
W ~- 1 the role of  the homoclinic points is played by the inner heteroclinic 
ones. After some iterations they come near W~. 

From the numerical experiments done with the a = 1.4 value it seems that 
almost every point in R is attracted by W~, which then becomes (part of) 
a strange attractor. The exceptions are the periodic points. So far none of the 
computed POs is attracting. The importance of attracting POs is discussed in 
Section 4.3. Table I I  gives some of the periodic points for a = 1.4. I t  seems 
that the only periods not present are 3 and 5. We study both cases in Section 
3.2. 

2.4. Periodic Points 

The equation for an n-periodic point is T'~(Xo, Y0)= (x0, Y0), or, 
equivalently, in R n, xk + 1 - bxk_  1 - ax~ 2 = 0, k = 1 to n, with x~ = xj if 
i -= j (mod n). Every one of  the n equations represents a hypercylinder with 
(n - 2)-dimensional generatrix and has as orthogonal cross section a parabola 
in a plane generated by vectors of  the form (1, 0 ..... 0) r and (0, 1, 0,..., - b) r 
(for the remaining equations apply circular permutation). All the parabolas 
are equal. 

Let F ( x )  = 0 be the set of  n equations defining the n-periodic points. 
According to B6zout's theorem the number of  solutions (in C ") is 2 n if all the 
components of  F ( x )  = 0 are zero-dimensional. Let us suppose that a one- 
dimensional component  V exists and that x, y E V with ]Ix - YH small 
enough. Then 

0 = F ( y )  = F ( x )  + D F ( x ) ( y  - x)  + 0 .5D2F(x ) ( x  - y)2 

D F ( x ) ( y  - x )  can be zero if x is a double point, but if I~ is the identity 
matrix in R ~, then D 2 F  is a I , ,  a scalar matrix, which leads to an absurdity if 
x ~ y. So, we have at most 2" real n-periodic points. For  Sections 3 and 4 
it is interesting to analyze double points (i.e., bifurcation points). 

The n + 1 equations giving a bifurcation are F(x ,  a) = O, [DxF(x ,  a)[ = 
0 (where we make it explicit that a is a parameter).  The last equation can also 
be written 0 = [ D T  '~ - I] = ( - b )  ~ - T r (DT ~) + 1. I f  we expand we get 

0 = (2a)" ~ + (2a)"-2b ~ + (2a)"-'b 2 ~ + ... 

+ (2a)"-2t"/21b t"m ~ - ( - b ) "  - 1 
n,[nl2] 
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where ~n = 7:~=~ x~ and ~n,k is the sum of all the products o fn  - 2k factors 
obtained by taking off from xl ..... x , ,  considered circularly, k couples of 
consecutive elements. For instance, 

~ = X l X  2 --]- X2X a + XaX 4 -}- X 4 X  5 -t- X5X 6 -1- XuX1 2r- x l x 4  + X2X5 -Jr- X a X 6  
6 ,2  

It  is curious to note that the number of elements in ~.,k is 

Vk(n) n -- k 

a number closely related to the classical "probl6me des m6nages" in 
combinatorial analysis! 

The unstable POs have invariant manifolds W~_po and Wg.vo. Roughly 
u u s speaking, the unstable manifolds W~_po are "paral le l"  to W+ and the W~_po 

are transverse to it. There are heteroclinic points, which implies that W~-eo c 
W~. Then the strange attractor is really the closure of W~. We shall call 
such an attractor the Hdnon-Pomeau attractor. 

2.5. Cantor ian  Charac te r  and H a u s d o r f f  D imens ion  

It is well known that the introduction of the "horseshoe diffeomor- 
phism" (18~ has been very fruitful in the study of the vicinity of the homoclinic 
(or heteroclinic) points through symbolic dynamics. 

In our case we shall use similar techniques in order to study the Cantorian 
character, and at the same time we shall compute the Hausdorff dimension 
of Wg 1. The Hausdorff dimension (8~ is a convenient tool for the description 
of sets " intermediate"  between a point and a segment, such as the ternary set 
of Cantor. 

We consider W~-I and its intersection by W~2. Because of the stable 
character of the latter, every point tends to H+ under T k, k --~ m. We consider 
the points B, C,..., L J (see Fig. 3). All of them are mapped in AH+ by T 4. 
Moreover, through the components of W~-I that intersect W~-2 between A 
and H+,  a feedback is produced. We shall say that AH+ is mapped in BC, 
DE, FG, IJ. This allows us to idealize and to propose the following model. 

Model  I. AH+ is mapped in BC, DE, FG, IJ, which in turn are mapped 
by T ~ in B'C',..., I'J', B' - A, all of which are in AH+. We assume that the 
four images B'C', etc. are obtained linearly from AH+ by mappings r 
i = 1-4, and that in AH+ the mapping T 2 is linear. Then W~.I n AH+ is a 
Cantor  set and its Hausdorff dimension is the value of ~ that satisfies 

4 

A~+ ~ l ~ =  l with h = d(T2X, H+)[d(X,H+) 
t = l  
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where X is any point of AH+ and/1 = d(B', C')/d(A, H+), 12 = d(D', E')/ 
d(A, H+), etc. 

It is sufficient to study the intervals that will be eliminated from AH+ 
by the successive feedbacks and applications of T 2. 

First we suppress C'D', E'F', G'I', J'T2B ' and their images under T 2j, 
j > 0 (an infinite set of intervals, which makes a difference with respect to the 
ternary Cantor set). 

Second, we supress in B'C', D'E', F'G', I'J' the images ~: under ~ ,  
i = 1-4, of the intervals eliminated by the first operation and the images 
under T 2s, j > 0, of the components of ~, etc. It is clear because of  the 
linearity of T 2 and of 4, that one obtains a Cantor set. 

With respect to the Hausdorff measure, using the Besicovitch-Taylor 
relation ~ (which gives the dimension for Cantor sets if we take inf a), it is 
sufficient to determine inf ~ for the ~ such that the sum of the powers a for 
the suppressed intervals is finite. But this sum is a geometrical progression of 
ratio ~=1  U ~j~0 As~. We must have ~=1  l~/(1 - A~) < 1 and in going to 
inf we obtain the desired relation. 

Application. We have already obtained the first 500 intersections of W~ 
with the part BH+ of W%2 (Fig. 3). This gives in particular the points 
A',..., J '  and one obtains the numerical values A- 1 = 41.11968; l;- ~ = 1145.6, 
1896, 58670, 9230, respectively. Therefore ~ __ 0.2303. 

However, model I does not agree completely with reality, as has been 
noted. A first modification consists in not considering the applications ~ as 
linear. The length of the intervals suppressed at each feedback depends on the 
nonlinearity. I f  q~ is (r,, R~)-Lipschitz (i.e., r~[a- b] ~ I f ( a ) - f ( b ) ]  ~< 
R~]a - b]), we can prove immediately that ~ ~ [~ ,  ~2] with 

In our case the limitations 0.5 < r; < R~ < 2 imply ~ ~ [0.2167, 0.2461] and 
0.1 < r~ < R~ < 10 imply ~ 6 [0.1915, 0.2959]. 

In reality things are more complex. Figure 3 shows qualitatively the type 
of thing that happens. The different loops of  W~ ~ can intersect W% 2 between 
A and H+,  say in points M and N, and, for instance, not intersect W~_2 
between D and E. This implies for the corresponding q~ (in this case ~2) that 
points far apart such as M*, N* of AH+ are mapped in much closer points on 
DE (the value of r~ should be taken as 0). As a result, the Cantor set increases 
(because of the absence of feedback from the suppressed intervals). 

M o d e l  II. The applications ~ of model I are not defined in some sub- 
intervals o f ) I l l+  (see Fig. 3). However, it is possible to come back to model I 
by considering not the direct feedback on BC, DE, etc., but the feedback after 
a number of foldings of W~. ~. 
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Fig. 3. a = 1.4: The feedback effect, models I and II, for the Cantorian character of the 
SA and for the evaluation of the Hausdorff dimension. 

Application. As indicated in Fig. 3, one obtains now 20 different images 
for the r We assume again linearity (which is accurate enough). We obtain 
the values of l (1:  1.338E6, 3.15E8, 1.39E9, 4.176E6, 5.777E6, 1.083E7, 
2.101E6, 1.152E6, 1.289E6, 2.77E8, 0.825E9, 3.809E6, 2.342E6, 1.195E6, 
0.996E6, 1.111E6, 1.057E6, 1.047E6, 4.855E5, 4.916E5, considering the images 
under T 4 in AH+. Therefore ~ _~ 0.2365, and we see that our initial estimate 
was not too erroneous. 

Of  course, considering the feedback in successive steps, one can build 
models which approach the reality more and more closely. 

With respect to W~2, since it is TW~+I and T is linear on W~2 in the 
vicinity of H+ (approximately), the Hausdorff  dimension of W~ 2 n W~ 2 will 
be the same as that of W~I ~ W~-2. Finally, W~_2 is inserted between the two 
branches of  Wg, and, in the  absence of a more detailed study, does not seem 
to bring any essential modification to the above description. Therefore the 
Hausdorff  dimension of the attractor will be the value obtained for W~ 1. 

We have seen that in the computation of the Hausdorff  dimension there 
are two facts to take into account: the eigenvalue at H+ along W~ and the 
feedback effect of the unstable manifold. 

The inclusion of W~.po is not necessary in the computation of the Haus- 
dorff dimension. I f  it is true that for a = 1.4 all the POs are unstable, then 
the corresponding A along W~_z,o are less than 0.3 n. The Hausdorff  dimension 
of W~,.po (provided that there are homoclinic points) decreases when n 
increases. As the Hausdorff  dimension of a union is the greatest dimension 
of the components, the only dimension to take into account is that of  W~. 

3. N U M E R I C A L  E X P E R I M E N T S  

Following the study of  the case a = 1.4 we undertake the cases a > 1. 
As noted by Feit, (s~ for values of  a greater than 1.4269... it is difficult to see 
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any attractor, with some minor exceptions. First we compute attractors for 
a = 1(0.01)1.42. 

3.1. S o m e  A t t r a c t o r s  

The method followed to detect attractors for every value of a consists 
in taking as initial points x = 0(0.1)1, y = -0.3(0.1)0.3, computing the first 
4000 iterates of  every point, and plotting the following 1000 iterates. We list 
the results with comments:  

a = 1.00-1.02: 

1.03-1.05 : 

1.06: 

1.07: 

1.08: 

1.09-1.15: 

1.16-1.22: 

1.23-1.25: 

1.26: 

1.27: 

1.28-1.29: 

1.30: 

1.31-1.42: 

4-periodic attractor. The four points are roughly on a 
parabola like the part  of  W~ in Section 2 between the first 
fine tongues. 
8-periodic attractor. There are four groups of two points. 
The distance between couples increases when a does. 
Eight pieces of  strange attractor (SA). Each piece is roughly 
centered in an 8-periodic unstable point. 
Four pieces of  SA and a 6-periodic attractor. Each one of 
the pieces seems to be the fusion of  two pieces of  the 
preceding case. Centered in 4-periodic unstable points. 
Four pieces of  SA on one side and six pieces of  SA on the 
other. The six pieces substitute the 6-periodic attracting 
orbit. 
Two pieces of SA. Each one is obtained by the fusion of two 
pieces of  the preceding case. When a increases, each piece 
suffers folding and increases in amplitude. 
One SA obtained by fusion of the two preceding pieces. 
Folding increases if a does. 
7-periodic attractor. The seven points are disposed on a 
curve which reminds one of the preceding SA. 
14-periodic attractor. There are seven pairs of  points. Each 
pair replaces one of the seven points. 
Seven pieces of  SA, each one centered in a 7-periodic 
unstable point. 
One SA. With some more folding we find again the attractor 
obtained for a = 1.16-1.22. 
7-periodic attractor. The same comment  as for a = 1.23- 
1.25. 
One SA. Some comment  as for a = 1.28-1.29. 

Many questions can be formulated: Some bifurcations of POs are clear, 
but the appearance of SAs, their fusion, their disappearance, the coexistence 
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of different attractors, and why an attracting PO sometimes destroys a SA 
and sometimes does not, are a challenge. In Section 4 we attempt to give 
mechanisms for explaining such phenomena and the ones to be encountered 
in the following numerical experiments. 

3.2. Periodic Orbits: Evolution and Bifurcations 

The computation of POs for a given value of a is a hard task. Except for 
small values of the period, it is cumbersome to write the adequate polynomial. 
We have used minimization and quasi-Newton methods in order to get some 
periodic points. After a PO is obtained we obtain its evolution by the 
continuation or Davidenko method. 

Let G(x, y, a) = T ~ ( x ,  y) - (x, y). We must have G(x, y, a) = O. Intro- 
ducing a fictitious time t and unit velocity in the (x, y, a) space, we have 
D x G . 2  + DyG.~  + D~G.d = O, )?2 + 3~2 + d2 = 1. We obtain Dx,yG and 
DaG f rom the recurrent formulas 

D~,yG = M,~-I ~ Mn-2  . . . . .  Mo - I 

where 

and 

DaG = D~Ta ~ 

(_Xo) D~T~ ~ = - 1 + b • )  DaT~- 1, k = 1 to n 

Certainly ]Dx.yG[ can be zero (when one of the eigenvalues of  T" equals 
+ 1), but the quadratic behavior of the solutions with respect to a ensures 
that the rank of  Dx,~.aG equals 2 when [Dx,~G] = 0 if the point (x, y) does 
not have period n/2 for that value ofa .  Then there are no numerical difficulties 
in the continuation of the family of  POs. 

Unfortunately, when (x, y) has period n/2 we have a cubic behavior and 
rank D~.y.~G = 1. Numerical continuation can be done by symmetry around 
the critical point (x, y, a) or by an analysis of  the second differential. Via a 
local diffeomorphism mapping the characteristic curve x(a), y(a) into the real 
line we can use the ideas of  Guckenheimer. (6) 

Table I I I  gives some periodic points that we can add to those of  Table II. 
In Fig. 4 we plot some evolutions x(a), y(a) for different periodic points. 

An n-periodic orbit is attracting if both eigenvalues have modulus less 
than one. As Ihl]. IA21 - -  [ ( - b ) ~ l  < 1, stability is initiated when A1 = 1 and 
ends when ~2 = - 1. When A1 = 1 we have a bifurcation. An attracting and 
an unstable PO are created simultaneously. The value A2 = - 1  means that 
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Fig. 4. Some periodic points as a function of a for a ~< 2.8. [: points with A1 = 1 ; ] : 
points with A2 = - 1 ;  ]~: points with [)h[ = IA21. Associated values of a~ (see Table IV): 
2.6575, 1.5239, 1.0624, 1.4492, 1.2266, 1.2991, 1.1218, 1.3233, 1.3866, 1.2940, 1.1001, 
1.1768, 1.3904 for plots A - M ,  respectively. 

Table III. Addit ional  Periodic Points and One of the Associated Eigenvalues 

a Period x y A 

1.07 4 (1 x 22) -0.00175651 0.25832047 - 1.81586 
1.07 6 0.34860969 0.18212252 -0.864962 
1.07 6 0.29885794 0.19507916 2.75279 
1.0720 12 0.12813633 0.23307435 0.390865 
1.0731 12 (6 x 2) 0.36360154 0.17795670 -0.199089 

1.0731 24 (12 • 2) 0.13183075 0.23222002 0.966407 
1.143 20 (10 • 2) 0.42704961 0.24319591 0.388272 
1.173 9 0.42751264 0.23934511 -1.55267 
1.173 72 (9 • 23) 0.42459872 0.23976637 -0.016858 
1.177 20 (10 x 2) 0.22754463 0.26434875 - 1.39128 

1.23 7 0.42852339 0.38717441 0.119228 
1.23 7 0.45152597 0.28621935 2.67339 
1.25023 22 (11 • 2) 0.36360154 0.17795669 0.970098 
1.26 14 (7 • 2) 0.41381333 0.20021787 -0.994825 
1.2618 28 (7 x 22) 0.40848823 0.20209616 - 1.55846 

1.262 14 (7 x 2) 0.41177966 0.20057558 -1.6879 
1.300434 7 0.37589127 0.20728574 -0.014789 
1.300434 7 0.37747700 0.20517803 1.95097 
1.354 13 0.15110367 0.24001993 -0.756565 
1.4 27 0.27154379 0.20553789 -14928.2 

1.422 15 0.16835872 0.23607548 -0.943756 
1.6 6 0.20274833 0.22184159 33.2707 
2.6577 3 0.01043545 -0.20394794 0.685677 
2.6577 5 0.36770208 0.15755829 136.94 
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T 2" has an eigenvalue 1. Two stable 2n-periodic points are created, both 
belonging to some 2n-periodic orbit, and the initial n-periodic point loses its 
stability. Therefore the numerical difficulties mentioned above are not 
essential. We can recover the lost half of  the characteristic curve through 
iteration of T to one-half of  the period. 

As noted in Section 2.3, it seems that for a = 1.4 all the periods are 
present with the exception of n = 3, 5. Feit has made a search for 3-periodic 
orbits, because of the importance of period three (see Li and Yorke(l~ 
Points 3-periodic start at the exact value a = 2.6575 and are attracting until 
2.664446 .... The associated attractors can be seen in Ref. 5. 

In the range a ~ [1.4269..., 2.6575] there can be found many attracting 
POs. For  instance, at a _~ 1.4492292801 there begins a 6-PO which remains 
attractive until a ~ 1.4508126, when a 12-PO appears. 

Another very interesting case is the 5-PO, which appears at a _~ 
1.52394843 and loses its attracting character at a ___ 1.527538. 

Once a PO is created for a given value of a = ao it remains for all other 
values a > a0 (at least this has been observed in our experience; see Section 
5.3). I f  the A of maximum modulus is - 1, that eigenvalue decreases mono- 
tonically. I f  it is 1, there is a transition to - 1 in a certain interval [ao, ao'] 
(see Section 4.2). When we reach Z = - 1 ,  that eigenvalue again decreases 
monotonically. 

3.3. Lyapunov Numbers  and the Evolution of A t t rac tors  

In our case (R 2) we consider the limit l = lim~o~(1/n) ln]Spec DTn(x)i 
if it exists. Here Spec means the spectrum. As [DT ~] = ( - b )  ~, the two values 
taken by the lira exist simultaneously and are related by ll + /2 = In b. They 
are called Lyapunov numbers or characteristic exponents associated with T. 
As the dimension is two, we shall call them maximal, /1, and minimal, /2, 
Lyapunov numbers. We refer to Pesin (1~ for a general theorey of the Lyapunov 
numbers. 

The meaning of the maximal Lyapunov number is the log of the maximum 
averaged rate of  growth of the length of  a vector under iterates of  DT, 
starting at the point x, i.e., the velocity of  separation of  an orbit that begins at 
a point very close to x. I f  x belongs to a dosed k-periodic orbit, then l = 
(l /k) lnlSpec DTk(x)]. The same is true if the PO attracts x. In this case [Spec 
DTk(y)] < 1 (y e PO) and l < 0. 

The minimum value of 11 is �89 In b = -0.6019864. Bifurcations are pro- 
duced when/1 = 0. Positive values of/1 are associated with strange attractors. 

We remark that different initial points may be attracted by different 
attractors. Then their ultimate behavior and, correspondingly, their charac- 
teristic exponents depend on the basin of  attraction to which it belongs. For  a 
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H _  
Fig. 5. Starting points for the evaluation of the Lyapunov numbers (for every value of 
a). Point 1 in the symmetric of the tangent to W~_ with respect to the line x = y. Add 
small displacements Ax = Ay = 10-16. 

fixed value of a many different attractors can exist and the associated 
Lyapunov numbers can be different (see Section 5.2). For  points in the same 
basin the Lyapunov numbers are the same. Such basins are determined using 
stable manifolds of  POs. 

We restrict ourselves to points in the stable region R. For  points outside 
this region (l/n) In[Spec DT'~I has a diverging exponential behavior. 

The effective computation of/1 was done for every value of a, starting 
f rom 20 different points (Fig. 5). Ten of them were chosen equally spaced on 
a circumference of radius 0.01 around H + .  The others were along the line 
joining H+ to H _ .  Small perturbations O(10-16) were added to these points. 
Then we computed T '~, D T  '~ up to n = 15,000. We supposed that for this 
value we were already near the attractor and obtained T ~, D T  '~ for n = 
15,001-30,000. The adopted value of/1 is the mean value for the last 15,000 
iterations: (1/15,000) In maxlSpec DT15,~176176176176176 The 20 values ob- 
tained can differ for two reasons: the initial points tended to different 
attractors or the transient regime was not yet finished. When the last circum- 
stance was suspected we increased the number of  iterations up to a maximum 
of 450,000. 

For  most of  the values of  a, i f /1  < 0 for several starting points, the 
values of/1 obtained (for the same attractor) agree to four decimal places. I f  
11 > 0 there are minor errors [O(10-3)] and the given values are averages. 
When an attracting k-PO is established,/i  decreases (for increasing a) from 
zero at a = a~ ~ to 0.5 In 0.3, then increases to zero at a = a~.k, and again we 
have a decrease corresponding to bifurcation. This pattern is repeated an 
infinity of  times with decreasing widths in the a intervals (see Section 4.2). 
The values of  a when ll = 0 (bifurcations) will be called a~, a~.k, az2.k,..., 
a~-.k,.... They accumulate at some value a~ ~.k. The superscript i means that 
different attracting k-POs with the same basic k period can occur for different 
values of  a. 

Figure 6 gives a plot of  the values of l l  obtained for a e [1, 1.426]. Several 
values o f / i  are associated with certain a values and the results are not corn- 
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Fig. 6. Lyapunov numbers found starting at the points of Fig. 5. 

plete. Other values can be obtained starting from other points. For  instance, 
at a = 1.0720 we detected one SA with/1 = 0.109 which attracts the points 
labeled 1, 3, 4, 7, 8, 9, 10, 11, 12, 15, 16, 18, 20; a 12-PO with ll = -0.0521,  
attracting the points 5, 6, 14, 17, 19; and another 12-PO with/1 = -0 .0783 
attracting the points 2, 13. The SA has four pieces and is destroyed at a 
1.0723. The previous history of that attractor is described in Section 3.1. 
The first 12-PO is obtained by bifurcation of an attracting 6-PO (whose birth 
is at a -~ 1.062371846) at a _ 1.071065 and loses its attracting character at 
a _~ 1.07501, where it bifurcates to 24-PO, then to 48-PO, etc. Accumulation 
of bifurcations takes place at 1.0763... and then it seems that a strange 
attractor with six pieces is born (see Section 4.5). The points attracted by 
such POs change to numbers 6, 14, 17, 19 at a = 1.0732, to 6, 11, 14, 17, 19 
at a = 1.0753, and to 2, 6, 11, 14, 17, 19 at a = 1.0763. When the SA is born 
it attracts the same points. 

On the other hand, the other 12-PO is born at a _ 1.071902 (not by 
bifurcation of  a 6-PO; see Section 3.2) and for a = 1.0720 it attracts points 
2, 13. Using the methods of Section 3.2, we can follow such a PO, but we lose 
it if we only consider Lyapunov numbers. Studying the Lyapunov numbers, 
we recover it at a = 1.0724. Then i t  produces the destruction of the four- 
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Fig. 7. Enlargement of Fig. 6 in the interval [1.07, 1.08]. 

piece SA and all the points (except numbers  5, 6, 14, 17, 19) are attracted by 
such a PO. A bifurcation to 24-PO occurs for a --- 1.0729, and successive 
bifurcations accumulate near a = 1.0735. After that  value a SA is born. For  
a = 1.0752, for instance, we have one SA of  four pieces (with ll = 0.102) and 
a 24-PO with /1 = - 0 . 0 2 0 8  and we agree with Ref. 5. See Fig. 7 for a E 
[1.07, 1.081. 

F r o m  a = 1.0764 on, two strange attractors are present with six pieces 
(attracting points 2, 6, 11, 14, 17, 19) and four pieces (attracting the remaining 
14 points). Doing  the computa t ions  with a step in a o f  10 -4 we found that  the 
strange character o f  the two types o f  at tractors can change in small intervals. 
The four-piece at tractor  is changed to a PO at a = 1.0758, 1.0787. The six- 
piece one is changed to an attracting PO at a = 1.07674, a = 1.0779, a = 
1.0788 to 1.0790 and disappears for  a ~ 1.0806. When  one such SA is 
changed to a PO the at tracted points are roughly the same. Those points 
change slowly with a. Partial results in [1.07, 1.08] are given by Curry/3~ 

After the value a = 1.081 only the four-piece SA persists and changes to 
a two-piece SA as stated in Section 3.1 (roughly at a = 1.084). I t  is fully 
destroyed by PO at a = 1.096, a = 1.101, and a = 1.143. I t  exists but some 
of  the points are at tracted by a PO for a = 1.122 (points 2, 3, 18) and a = 
1.123( points 2, 3, 9, 18). 

The two pieces o f  SA become only one piece for a = ac~ ~ 1.1535702. 
Then the genuine H 6 n o n - P o m e a u  at tractor  begins. Of  course every attracting 
PO calls for a complete sequence of  bifurcations and many  POs have not  
been detected in that  search. 

After  ac~ the SA is destroyed at a = 1.173, 1.177, 1.1770103, 1.177041, 
1.1770595, 1.18199, among  others, by different families o f  POs. At  specific 
values o f  a many  computat ions  are done with rather small steps. The infor- 
mat ion is not  described here but  will be used in Section 4. In  such regions we 
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increase the number of  iterations in order to get a reliable value of /1.  The 
main difficulties in obtaining agreement between the/1 values coming from 
different starting points are produced just in the regions of  great change in/1,  
especially after an accumulation of bifurcations is produced. Tentative 
reasons are given in Section 4.5. 

At a _~ 1.2266173785 there begins an attracting 7-PO which attracts all 
the points in R. The bifurcation at a _~ 1.24519 gives rise to 14-PO, that at 
1.260... to 28-PO, etc. After that we see a seven-piece SA destroyed at 1.265, 
1.269 by POs, that is, changed again to the H6non-Pomeau attractor for 
a _~ 1.273. We have again destruction by 9-PO at 1.29395482337 and by 7-PO 
and bifurcations from a = 1.2991160531 to 1.306 .... For a small range of 
values of  a there is a seven-piece SA and at a = 1.309 the one-piece H6non-  
Pomeau strange attractor reappears. This attractor exists until a = ao2 = 
1.4269212... (see Section 4.1), which is destroyed for very thin intervals of  a 
near 1.354, 1.4028, 1.4219, among others. For  a = 1.4221 we get a 15-piece 
SA. The value of ll is 0.011. Every one of the pieces is rather small and the 
global behavior is like that of  an attracting PO which has just lost the attract- 
ing character. This explains the small value of/1 because at the accumulation 
of bifurcations a2| we get/1 = 0. 

4. EXPLAIN ING THE RESULTS 

The information we have obtained through the previous computations 
gives us a rough idea of the complexity of  the studied map. This calls for 
mechanisms to explain the observed phenomena, and this is the object of this 
section. 

4.1. Unstable  Invariant  Mani fo lds  As St range At t rac tors  

From Section 2 it seems that the closure of  W~ is the SA. However, if 
W~_ has to be an attractor, we must have the feedback property, i.e., we 
must have homoclinic points (similar ideas are found already in Newhouse(13~). 
The appearance of homoclinic points can be easily determined using the 
local expressions for W~+ "~ and the continuation of W~ (we can restrict 
ourselves to a small piece of  W~_ near H+). We have found the value a = 
at1 = 1.1535702... as the first critical value of a associated with the H6non-  
Pomeau strange attractor. 

In Fig. 8 we plot W ~,~ for a = 1.1, 1.2, 1.4, and 1.5. 
We have already mentioned the (possible) existence of outer heteroclinic 

points: W~ c~ W ~_ r ~.  When transverse outer heteroclinic points exist 
there are pieces of  W~_ outside R. Points that initially become attracted by 
W~ are scattered along a thin neighborhood of such a manifold until they 
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Fig. 8. Quantitative plots of W~ 's for a = 1.1, 1.2, 1.4, 1.5. Here W~. ~ W~. = 
only for a = 1.1, and W~ n W ~ _ # ~ only for a = 1.5. 

reach an outer region between two heteroclinic points (see Fig. 9). Then they 
become unstable. In  our  case the first appearance o f  an outer heteroclinic 
point  is at a = at2 = 1.4269212 .... when the H 6 n o n - P o m e a u  at tractor  
disappears. 

We can suggest that  in general if an unstable invariant manifold has 
homoclinic points and no heteroclinic points and is bounded,  then its closure 
is a strange attractor.  

The same mechanisms explain the existence (or not) o f  strange attractors 
as the closure o f  invariant unstable manifolds o f  POs. For  instance, when the 
4-POs have associated homoclinic points, there is the possibility o f  Wg_po 
being the four  pieces o f  a SA. However,  when W~_eo cuts W~.po the points 
obtained play the role o f  outer  heteroclinic points and Wg4_vo loses its attract- 
ing character. Just  at the same value the homoclinic points o f  W~_eo begin. 
Then  the four-piece SA is converted to a two-piece SA (see Section 4.4). 
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Fig. 9. Mechanism producing the escape for the points 
in the basin of W.~ when an outer heteroclinic point is 
present. Points:  A, homoclinic;  B, inner heteroclinic; C, 
outer heteroclinic. 

C 

4.2. The Evolution of POs 

At  some definite value a ,  a k -PO begins. Let  2,1, A2 be the associated 
eigenvalues. We have ;~1~2 = ( - 0 . 3 ) " .  Suppose  ~i(a,)  = 1. We must  distin- 
guish the cases k odd and k even. 

I f  k is odd, A2 < 0. At  some value a~ in we have ~1 = -2~2 = (0.3) k/2. 
In  (a , ,  a~in), l~ is monotonica l ly  decreasing. F r o m  a~ in on, 1~2[ > ]~11, lz 
increases again, and for  a = a2., we get ;~2 = - 1 and bifurcat ion appears .  

I f  k is even, ;~2(ak) > 0. In  order  to reach the value/~2(a2.k) - ~ -  - -  1 for  the 
bifurcat ion we pass th rough  complex  values. F r o m  a ,  to a~ in 1, 2~1 ~,  A2 j ' .  
At  a~  ~1 we have A1 = ~2 and a na r row band begins with IA~I = 1~21, bo th  
complex,  which ends with ;~1 = ;~2 < 0 at  a = a~  ~2. Then  again ]~zl Iv, 
1~21 f" up to a = a 2 . . .  In  [a~ ~"z, a~ ~"~] the Lyapunov  number  equals the 

I ar~_~n~ d~_J n2 
mm cninl ram2 2~k. ~2Zk ~2"k 

a k a,, a2k a2k ~a2k a k a k _ .  _ 2 z  "~ t z*  

t ._5)_q .3 ...... [ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  | _I___ 

~ .  a k 

a k 

a2k~,ct~ -k k ~,en 

Fig. 10. Evolution of the Lyapunov number  for the successive bifurcations of periodic 
orbits and of the eigenvalues between two consecutive bifurcations. 
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Table IV. Characteristics of Some Families of Periodic Orbits 

k j 

a rain 
~ s  ( la l  = m i n )  o r  

amen z a~.2Y ()q = 1) ak.minlzJ -- k-2J a~.2J+~ (a2 = --1) 

1 2 0.9125 
1 3 1.025856 
3 0 2.6575 
5 0 1.52394843 
6 0 1.062371846 

6 1 1.071070 
6 0 1.4492292801 
7 0 1.2266173785 
7 1 1.25418337 
7 0 1.2991160531 

8 0 1.1218357533 
8 0 1.32330679028 
8 0 1.38661224376 
9 0 1.172389 
9 3 1.172994844 

9 0 1.29395482337 
10 0 1.10012012667 
10 1 1.14298441 
10 0 1.17676498357 
10 1 1.1769123 

10 0 1.39044286145 
11 0 1.25018859547 
12 0 1.07190193 
12 1 1.0728902 
13 0 1.353917 

13 0 1.39270600339 
13 0 1.39944961920 
15 0 1.368201373 
15 0 1.38303779472 
15 0 1.421812 

19 0 1.39311487446 
19 0 1.39614754924 
21 0 1.39870159504 
23 0 1.396095714617 

0.960-0.979 1.025856 
1.039_-1.039+ 1.051125 

2.659275 2.664446 
1.524849 1.527537 

1.0647_-1.0647 + 1.071070 

1.0728 _-1.0728 + 1.07501 
1.449589-1.449661 1.4508126 

1.231845 1.25418337 
1.257067-1.257070 1.260017 

1.300434 1.3038219 

1.122053-1.122065 1.1227199 
1.3233600-1.3233633 1.3235260 

1.38662488-1.38662570 1.3866643 
1.1725 1.172761 

1.1729999_-1.1729999+ 1.1730048 

1.29398045 1.29405702 
1.1003024-1.1003055 1.1008496 
1.14301_-1.14301+ 1.43035514 

1.1768016-1.1768023 1.1769123 
1.1769492465-1.1769492469 1.1769856 

1.390443588-1.390443600 1.390445794 
1.25019876 1.2502293 

1.07216_-1.07216+ 1.0728902 
1.07312_-1.07312+ 1.07335 

1.353949 1.354055 

1.3927060175 1.39270605985 
1.39945236 1.39946057 
1.368201406 1.368201496 
1.38303787896 1.38303813176 
1.42186 1.422008 

1.39311487505 1.39311487684 
1.39614754960 1.39614755068 
1.39870159508 1.39870159519 
1.396095714624 1.396095714643 



On the H~non-Pomeau Attractor 487 

minimum value. The pattern described for k even is the same as the one we 
have for the successive families of  POs that bifurcate at a2.~, a~2.k ..... Using 
the ideas similar to those of  May and Oster, (~2~ we obtain that (a~ in - ak)/ 

(a2.k - a~ i~) [or (a~ i~l - ak)/(a2.k -- a~ i~2) i f k  is even] is roughly equal to 3 
(especially if k is high). Moreover, for the successive bifurcations n~2 a2~. ~ - -  

-- rain 2 a2J.~ -~ a2~+~.k a2J.k , which again agrees with Ref. 12. The relative width 
(aq  ~2 - q~m)/ (a2.~  - aq) seems of the type ~ exp(/3q) with c~, /3 ad hoc 
constants, whether q equals some k even or q = U.k .  

Finally, the widths of  the attracting regions have a geometrically de- 
creasing character: ( a 2 J + ~ -  a2~+~.~)/(a2J+~.k- a2%) tends toward 1/6. 
(With quadratic behavior we get 0.457, 0.191, 0.170 for j  = l, 2, 3, respectively). 

Figure 10 shows some of the stated properties. Table IV gives numerical 
results for a variety of  POs. 

4.3. Creation of Attract ing Regions for POs 

When an attracting k-PO is created an unstable one appears. Let A and 
B be points in such orbits, respectively. One of the branches W~,I of the 
unstable manifold of  B is attracted by A. The stable manifold W~ encloses a 
region which tends toward W uB.1 and subsequently to A. 

I f  W~ cuts the current strange attractor S, whatever it is (some W~ or 
Wg_op), the intersecting points play the role of  outer heteroclinic points and 
destroy the SA. However, we do not lose stability; we merely transfer to the 
PO of A the attracting character of  S. Figure 11 clarifies this. Figure 12 is a 
plot of  the real behavior for a = 1.300434 (the reason for choosing such a 
value is that it is near an ap  in and then has a great attracting force). The same 
idea can explain why if two SAs are present, one of them can destroy the 
other if outer heteroclinic points appear. That  is the case for a = 1.0806 when 
the four-piece SA destroys the six-piece SA. 

For  a = 1.07 we have the plots of  Wg;~_vo in Fig. 13. We cannot separate 
the invariant manifolds W~_po and Wg_vo. The folds are so flat that they seem 
like only a line; for that reason we merely state where the more distant points 
reached by the manifolds are. We see clearly the homoclinic point for 4-PO, 
and the nonexistence of outer heteroclinic points: W~_po c~ W~_po = ~ .  The 

Fig. 11. Sketch of the destruction of a strange attractor 
by periodic orbits. S: previous SA; A: stable k-PO; B: 
unstable k-PO. 

W_ u 

B .1 A 
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675 _7 / 
Fig. 12. Plot of an  unstable 7.PO, B, for a = 1.300434, and the invariant manifolds. 

A is the attracting stable 7-PO with IA[ ~ 0.3 w2. 

I 

j-7 

Fig. 13. Invariant  manifolds for 4- and 6-POs. The value of a is 1.07. There is a four- 
piece strange attractor and an attracting 6-PO. Points:  A, 4-periodic; B, unstable 6- 
periodic; C, stable 6-periodic; J, L, ends of the first two tongues of W~_po.2; M, K, the 
same, for Wg-po.1; N, end of the second tongue of W~-po,~. The strange attractor is 
roughly the arc JM. 
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at t rac t ing  6-PO enclosed be tween  the two branches  o f  Wg.Po has some bas in  
but  does not  des t roy  the four-piece  SA. This  explains  the  results  in Sect ion 3.1. 

4.4. Fusion of Strange Attractors 

We have seen tha t  the genuine H 6 n o n - P o m e a u  SA exists for  a ~ (at1, at2). 
However ,  for  1.058048 < a < at1 there  are per iod ic  pieces o f  SAs. The value 
for  which SAs ini t iate  is a2~. W i t h  a rough  step in a (Section 3.1) eight-,  
four- ,  and  two-piece SAs appea r  successively unt i l  a = at1. A finer search 
detects a 16-piece SA at a = 1.059, 32-piece SA at a = 1.0582, etc. (On the 
o ther  hand,  we get an a t t rac t ing  16-PO at  a = 1.057, 32-PO at a = 1.0575, 
64-PO at a = 1.0578, 128-PO at a = 1.058, 256-PO at a = 1.05804, etc.) 

In  a s imilar  way, af ter  the  successive b i furca t ions  f rom the 7-PO which  
begins at  a = 1.2266173385 we have a seven-piece SA at  a = 1.27, bu t  at  
a = 1.262 there  is a 14-piece SA and  we have detected a 28-piece SA at 
a = 1.2619, a 56-piece SA at a = 1.26185, and  a 112-piece SA at a = 1.2618. 

A t  some definite value  o f  a the  stable man i fo ld  o f  a 2 i.  k -PO intersects  

for  the first t ime bo th  the  uns table  one and  the unstable  mani fo ld  o f  the 
2 J + l . k - P O  whose closure has been  the SA up to this value. Then,  as s ta ted 
in 4.1, we lose the  SA charac te r  o f  W~j + 1.k-Po, and  W~J ~.po gains it. W e  shall 
refer  to this as the fusion o f  s t range a t t rac tors .  

~ '36 I N 

272w,~~? ,A , ,,2 , 

i M.~ \ I 
i . . . .  \ , \ 1  

- ,g7 -" ' 1 
~W~.~ .329 

Fig. 14. Parameter a = 1.1. Strange attractor character for W~_Fo. Quantitative plot, 
two enlargements (A, B) and a qualitative picture (C). Points: aT, 2-periodic; K, homoclinic 
for J ;  L, end of a tongue of W.~ ; M, N the same, for W~-po. 
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The existence of outer heteroclinic points leads to the fact that a 2k-PO 
is a limit point of  W~.po. I f  the k-PO has no homoclinic points but the 2k-PO 
has, we have a 2k-piece SA and not a k-piece SA. For  the case k = 1, Fig. 14 
shows some computations for a = 1.1. We show H + ,  a 2-periodic point, and 
its unstable manifolds. In two enlargements we plot the behavior near the 
2-PO point (including homoclinic and outer heteroclinic points) and a detail 
of  one of the " e x t r e m a "  of W~_po. The dots are iterates of  an arbitrary initial 
point after the transient regime. This supports the evidence that W~_ro is 
the SA. A qualitative picture helps to understand the plots. 

4.5. Accumulat ion  of  Bi furcat ions and Fusions 

Two complementary phenomena have appeared: bifurcation of POs and 
fusion of SAs. The model that we propose unifies both facts. 

When a given k-PO loses its stability through A2 = - 1  a stable 2k-PO 
appears, which, for increasing values of  a, bifurcates again and again. The 
points of  bifurcation accumulate at a2~.~. Figure 15 shows the qualitative 
behavior (see also Ref. 10). 

For a value of a slightly greater than a2 =.k we have a k-piece SA (provided 
the conditions of  Section 4.1 are satisfied). I f  we decrease a at some value 
a~.k every piece of the SA splits in two pieces of  a 2k-piece SA just as stated 
in Section 4.4. Successive decrements of  a lead to new splittings at as 

= 2, 3 ..... We believe that the a~,.~ accumulate at the same a2~.k as the 
bifurcations do. Figure 16 shows the evolution of attractors when a increases 
and crosses the critical value a2| 

This model is also supported by the fact that just after a2=.k, very small 
(positive) values of/1 are obtained. They are associated with a SA with a large 
number of pieces. 

Then a cascade of bifurcations of  POs starting at a k-PO ends with the 
beginning of SAs that after some fusions develop a k-piece SA. The common 

a 
2 ~ k  = _ - . . . . . . . . . . . . . . . . . . .  

a 2 ~  k . . . . . .  

a T ak . . . . . . . . . .  - ' ~ .  
I s t a b l e  

| U ~ u n s  t a b l e  - -  

Fig. 15. Cascade of bifurcations of periodic points. The variable u is x, y, or some other 
variable used for the projection of the characteristic curve x(a), y(a). 
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I �9 

2 

Fig. 16. Evolution of the attractor when a 
changes. ( x )  unstable point; ((3) stable point; 
( ) part of unstable manifold; ( . . . )  part of 
stable manifold. (1) Stable k-periodic point; (2) 
first bifurcation and unstable manifold; (3) third 
bifurcation; (4) high-order bifurcation; (5) critical 
value a2| All the bifurcates are unstable; (6) 
W~,~ is a strange attractor; (7) fusion of strange 
attractors. W~T-lk becomes a SA; (8) after last 
fusion there is a k-piece SA. 

3 

4 

5 

6 

i v- ~---) 
7 

feeling that the cascades of bifurcations or generalized catastrophes on the one 
hand and the strange attractors on the other have some relation with turbu- 
lence is supported by our numerical results: Both facts are the same! 

We can say even more. We know (6,17) that for families of continuous maps 
of one interval into itself there is a definite order in the appearance of periodic 
points. It seems that this is true for the H6non-Pomeau maps if the interval is 
replaced by some narrow band around W~.. 

We must remark that the complicated fine structure is difficult to detect 
numerically. In fact, the origin of the difficulty is physical or geometrical. We 
can ask about the importance of the fine structure (see Ref. 1, p. 385). I f  we 
plot the attracting long periodic orbits and the many-piece SAs and do not 
enlarge the scale many times, what we see is almost a very small fuzzy set 
around periodic points of not very high order. 

As noted in Section 4~2, asymptotic methods for high values of U. k can 
predict with great accuracy the values of a at the bifurcations and fusions of 
the 2 r.k-POs and 2 r.k-piece SAs (r > j )  in terms of  the greatest of the 
eigenvalues of the 2 J- k-PO. 

5. A D D I T I O N A L  R E M A R K S  

We present here some remarks that complement the foregoing work. 

5.1. Independent Computat ion of Lyapunov Numbers 

The main part of the computations was the determination of Lyapunov 
numbers (in fact most of the remaining computations were done with a TI59 
programmable pocket calculator). When there exists an attracting k-PO we 
have/1 = (l/k) In max[Spec DTk(Q)I if  Q belongs to the k-PO. This is easily 
calculated along the families of POs obtained and agrees with the direct 
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evaluation. For  strange attractors we can compute/1 using only information 
along the associated W ~. Let ~ be the arc parameter on W u measured from 
the fixed (or periodic) point. Then/1 is given by 

fo /f: l l  = lira lnllOTIwU(x)llp(x) d,~ p(x) d~ 
$ --* c~o 

where x are the points on W u, DT[wu is the differential of the map restricted 
to W u, and U'"U is the induced Euclidean norm. The function p(x) is the 
density of limit points on W u at x. We hope that in some cases it can be 
determined using a Frobenius-Perron algorithm as in Ref. 9. 

Numerical experiments for computing/1 using the above formula need 
some value for p(x). Preliminary values are obtained taking a very small 
segment P, TP pn W ~ near the fixed point, with a uniforming spacing on it, 
and iterating the points many times. Then p(x) is roughly the number of points 
per unit of length. The convergence is rather slow toward the true value of 6.  
Suppose that/1 > 0 (a = 1.4 for example). As Tis not orientation-preserving, 
we compute effectively with DT 2. Near the end of the fine tongues of W~_ 
the value of  In [1DT2[ w~+ 1 l[ decreases to - 1.8. Many points in the initial seg- 
ment accumulate in such regions. This is the main reason for the slow rate of 
convergence. 

We must remark that/1 on W" can be computed even if W u has lost the 
SA character. The same is true for the Hausdorff dimension. When the SA 
is destroyed due to the action of attracting POs or of other SAs, it retains a 
latent character as attractor. 

5.2, Hysteresis 

As was observed by Feit and Curry, for a given value of a different 
attractors can be present simultaneously. Examples are given in Section 3 for 
which two SAs and POs coexist. Such a phenomenon is called hysteresis. I f  
the behavior for the H6non-Pomeau map is similar to the behavior of the 
Poincar6 map of the Lorenz problem and if the properties of  the Lorenz 
problem have some relation with those of B6nard's problem, then, depending 
on the history and for a given value of the Reynolds number, we can reach 
different turbulent regimes or quasiperiodic solutions. 

5,3. Other  Examples 

In Ref. 2, Chirikov and Izraelev study dissipative maps, among them 

( y )  ( x ' )  (x  + 9.76(yy - y + 1/6) - 0.3(x - O.5)) (mod l ) T = = 
y' y + x' - 0.5 

In the line x = 0 of  the two-dimensional torus the map is discontinuous. A 
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fine foliation of the phase space like the structures mentioned in Section 2.1 
was found by Chirikov and Izraelev. 

We found four fixed points for such a map:  x '  = 0.5, 9.76(y 2 - y + 1/6) 
= 0 and 1. All four points are hyperbolic (two of them with reflection). From 
the numerical experiments it seems that the attractor of  the dissipative map 
coincides with the union of  the four unstable invariant manifolds of  the fixed 
points (even if such manifolds are discontinuous at the preimages of  x = 0 
as in our case). 

Another interesting case worthy of mention is the one studied by Curry 
and Yorke. <~ The planar map is given by ~b2 o ~bl, where ~bl(p, 0 ) =  
(e ln(1 + p), 0 + 2) and ~b2(x, y) = (x, y + x2), with E a parameter  greater 
than 1. The Jacobian is e2 ln(1 + p)/p(1 + p). Then the map is expanding 
inside a given disk of radius p = o(e) and contracting outside. At ~ = 
1.27277... a pair of  stable-unstable 3-POs begins. Such orbits never bifurcate 
to 6-POs, but at a = 1.3953... both branches meet again and the 3-POs 
disappear. I t  seems that in the full range of existence of 3-POs the stable one 
is the unique attractor. 

For  E = 1.63 we get a four-piece SA formed by the unstable manifolds 
of  4-periodic points [like (1.605221758, 2.485830278), Z = -1.727498]. When 
e increases (A = - 3.2733 if e = 1.7) the four pieces interlace in a complicated 
way, appearing as a folded curve. Properties like the ones described by H6non 
and Pomeau (7~ are found if we enlarge the plots. 

Decreasing E offers a familiar panorama:  e = 1.6 produces an attracting 
8-PO, E = 1.58 an attracting 4-PO, etc. Four-periodic orbits disappear at 
E = 1.52463 .... 

When E equals 1.52 we found 7-PO [coming f rom (-0.5936748927, 
-1.049918978), A = - 2 . 3 8 2 2 2 8 ,  for instance]. The W?_po becomes the 
associated SA. I f  E = 1.50 the 7-PO has an attracting character. At the value 
e = 1.49443... a fusion of the unstable and stable branches of  the 7-PO is 
observed. 

Successive families of  10-PO, 13-PO, 35-PO, etc., are found at e = 1.49, 
1.46, 1.45(1/3 > 11/35 > 4/13 > 3/10 > 1/4). 

As a conclusion we think that in every case the mechanisms described in 
Section 4 (and others that do not play any role in the H6non-Pomeau  case) 
may be useful for understanding the structure of  attractors. In any event, the 
location of homoclinic and heteroclinic points seems to be a key point. 
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